If it's not what You are looking for type in the equation solver your own equation and let us solve it.
130+12t-16t^2=0
a = -16; b = 12; c = +130;
Δ = b2-4ac
Δ = 122-4·(-16)·130
Δ = 8464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8464}=92$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-92}{2*-16}=\frac{-104}{-32} =3+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+92}{2*-16}=\frac{80}{-32} =-2+1/2 $
| 5(x-8)=-9x-26 | | 5/19x+2=6/19x | | 0.5(9x+14)=59 | | 7(1/2x+4)-2x=2x+91/3-4x | | 5y+18=63 | | 5t^2-29t-42=0 | | -6x+8=5x-4 | | x^2+20*x-5120=0 | | -11x=24.2 | | 24.2+19x=30x | | 16x+18=14x | | 16x+18=15x | | 5x-3x+4=4+20 | | 4x-70=2x | | 15/4–7p/1=9 | | 4x+6=350 | | 0=2X^2+4x-15 | | -25x50+1=0 | | 2/3(-x+2)+1/2(x+2)=1/6 | | -25*x50+1=0 | | .15x=120,000 | | 4(2-3x)+3(2x-1)=1,2 | | u(-4)=-2-2(2)+7 | | t(-4)=6+3(2)-2 | | s(-4)=12-0.25(2) | | h(-4)=7-2(2) | | g(-4)=5(2) | | f(-4)=-2+4 | | 9x+5+4x+5=4x-3 | | 51-x=5x-15 | | 7x+23=10x-13 | | -8(5x6)=3x-5 |